

Carbon Neutral Strategy Briefing

A MITSUBISHI GAS CHEMICAL COMPANY, INC.

December 4, 2023

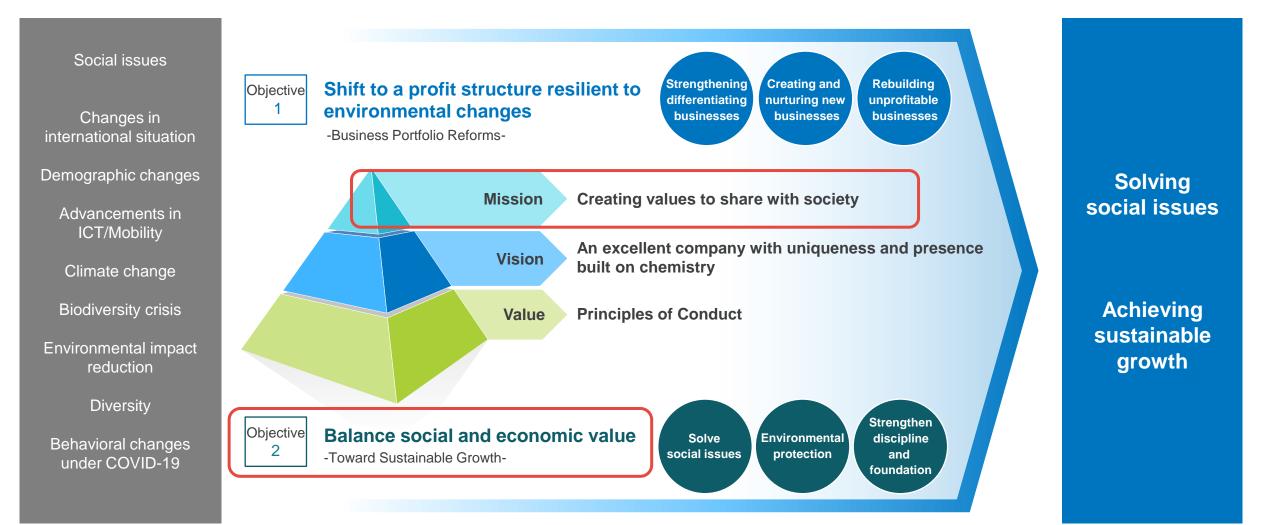
Securities Code 4182

Carbon Neutral Strategy (Overview)

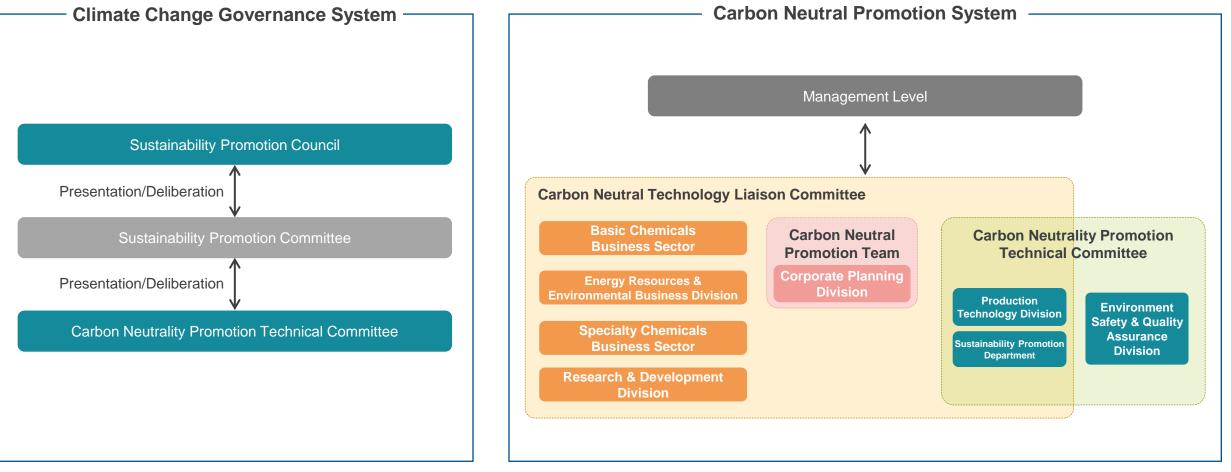
2 **Promotion of Circular Carbon Methanol Concept**

3 Promotion of CCS Utilization

1


1. Carbon Neutral Strategy (Overview)

Toward a Sustainable Society -Medium-Term Management Plan-



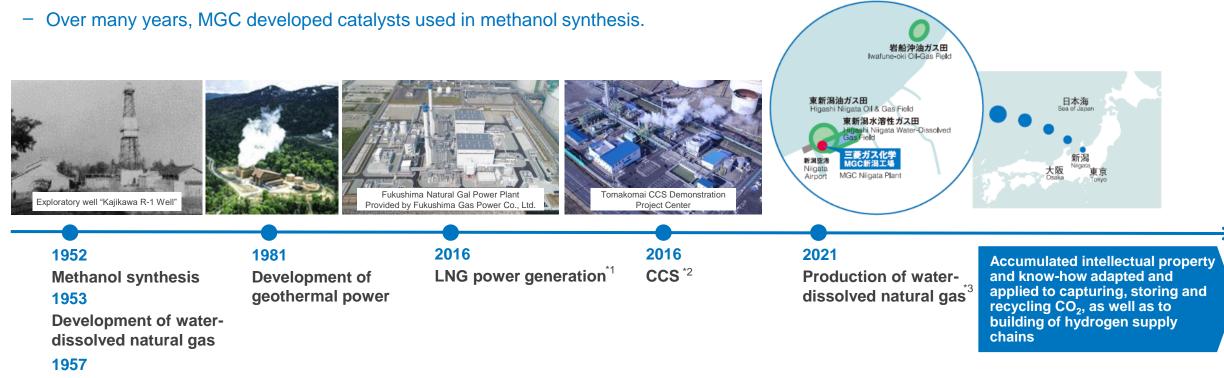
- We are committed to realizing a sustainable society by balancing social and economic value based on our Mission of creating value to share with society.
- Initiatives aimed at carbon neutrality are one of our top strategic priorities.

Carbon Neutral Promotion System

- Climate change risk and other sustainability key issues deliberated and decided by the Sustainability Promotion Council, comprised of members of the Board and chaired by the President
- Establishment of Carbon Neutral Technology Liaison Committee, enabling centralized management of MGC Group technology information and promotion of initiatives

MGC's Roadmap toward Its Ultimate Goal of Carbon Neutrality

- Aim to achieve reduction of 36% by 2030 in comparison with 2013 and carbon neutrality by 2050

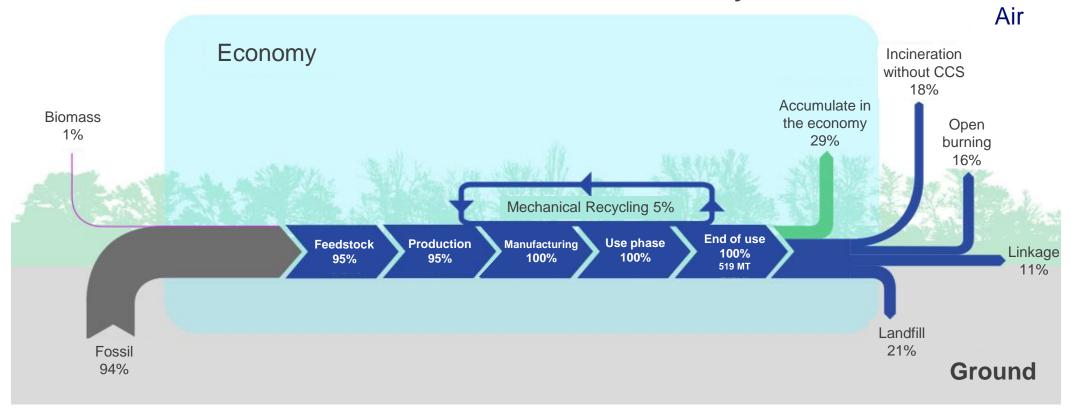

	Scope	2013 - 2019	2020 - 2	2023	2024 - 2030	2030 - 2050		
	Improve energy efficiency Reconfigure business portf		 Improve energy efficiency Stop using heavy oil 	16kt 13kt	Improve energy efficiency 28kt	Improve energy efficiency 40kt		
Main initiatives (CO ₂ Reduction)	Ľ.	258kt in total	 Reconfigure business port 	 Reconfigure business portfolio Deploy new energy systems/CCUS, switch feedstocks (R&D/collaboration) 				
	2	_	Source 10% of energy from renewables Use transitional energy		Source 50% of energy from renewables 55kt	Source 100% of energy from renewable 69kt		
Businesses & technologies	Eukusbin	a Natural Gas Power Plant	asabizawa Geothermal Power Station		JAPAN HYDROGEN ASSOCIATI	ON		
			asabizawa Geothermal Power Station ided by Yuzawa Geothermal Power Corp	Pilot plant for consider circular carbon meth		Feedstock switching		
CO2 emissions (kt of CC	D ₂ /year)	239	% reduction	28% reduction	36% reduction	2050 Achieve carbon neutrality		
			258	308	394	45% reduction 502		
		1,107	849	799	714	55% reduction 610		

Date of public announcement: March 29, 2021

MGC's Strengths in Carbon-Neutral Technologies (Accumulation of Energy Resources and Environmental Technologies)

- Over a period of around 60 years, MGC (on a stand-alone basis) deployed a business to develop natural gas. It has exploration and development technologies that are unique among those found at chemical manufacturers.
- Furthermore, MGC has implemented crude oil and natural gas exploration technologies on a joint basis with other resource development companies.
- MGC has also deployed businesses in the compatible areas of geothermal development and LNG-fired power generation.

Ammonia synthesis


*1 Investment in Fukushima Gas Power Co., Ltd.

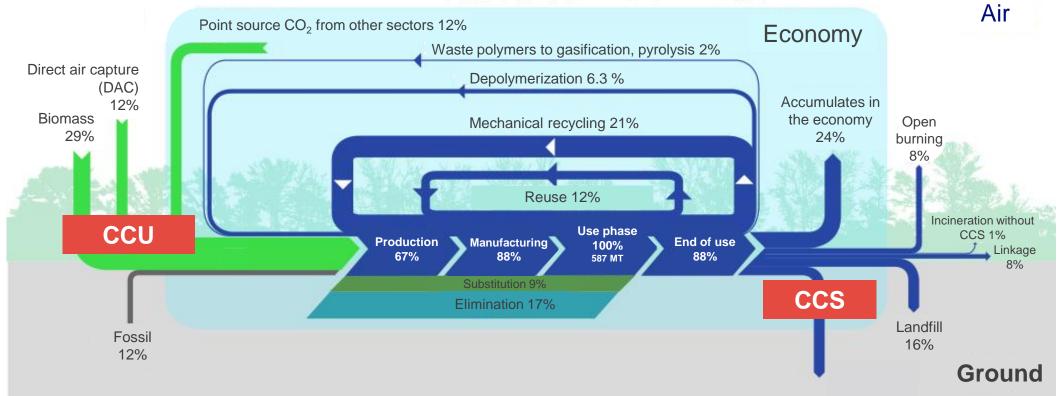
*2 Commenced press fitting of CO₂ within Carbon dioxide Capture & Storage (CCS) demonstration project conducted in Tomakomai City

*3 New production of water-dissolved gas for first time in 50 years by TOHO EARTHTECH, INC., an MGC subsidiary

Carbon Neutrality as Business Opportunity for MGC (1)

- The chemical industry today has a linear industry structure, with most raw materials derived from fossil sources
- Our goal is to help make a positive impact on the global environment by eschewing reliance on fossil resources and adopting a business model that is more recycling oriented and emits fewer greenhouse gases

Linear and fossil-based chemical industry as of 2020

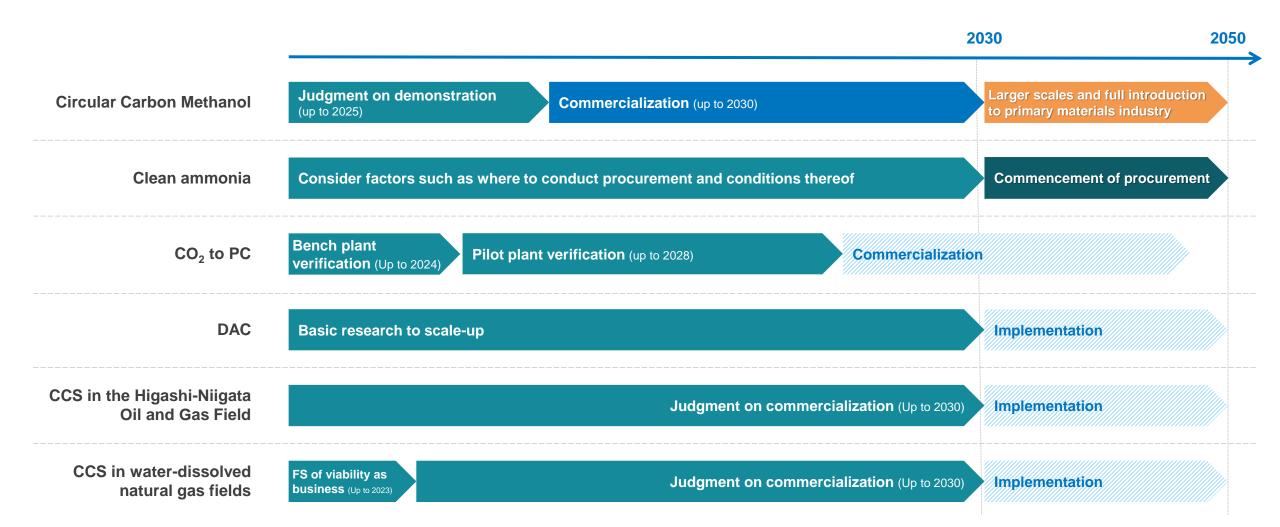

Source: Planet Positive Chemicals (The University of Tokyo, Center for Global Commons & SYSTEMIQ)

Carbon Neutrality as Business Opportunity for MGC (2)

- Leverage reuse and recycling to recycle resources (carbon); furthermore, use biomass and CO₂ as raw materials to reduce the volume of fossil resources used
- If waste CO_2 can be fixed underground, this can also become a source for CO_2 capture (CCS)
- The chemical industry can be one that captures and utilizes CO₂ from other industries (CCU)

The Ideal Chemical Industry in 2050

Source: Planet Positive Chemicals (The University of Tokyo, Center for Global Commons & SYSTEMIQ)


Carbon Neutrality as Business Opportunity for MGC (3)

- Pursue development of products and technologies conducive to carbon neutrality by leveraging distinctive technologies found only at MGC

*Carbon dioxide Capture, Utilization & Storage

Reference (1) Title, Objectives and Measures of Next Medium-Term Management Plan

MGC

(Reposted from financial results presentation materials released on November 8, 2023)

Title: Grow UP 2026 – "Growing," "Winning" and "Sustainable"

Plan Duration: Three years from FY2024 to FY2026 (Fixed Targets)

Positioning: Successor to Grow UP 2023; period that contributes to the realization of the vision for MGC in 2030 Retackling current plan targets and aiming for even higher goals

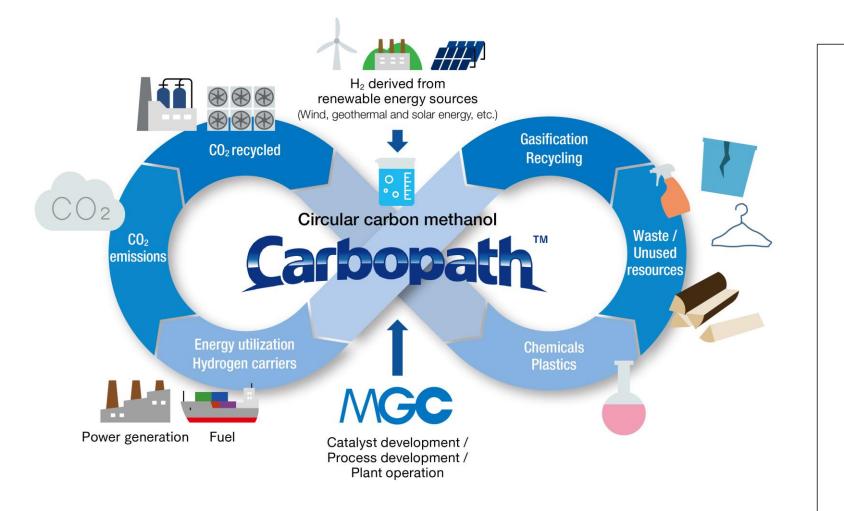
Reference (2) What is "Uniqueness & Presence"?

(Reposted from financial results presentation materials released on November 8, 2023)

 "Uniqueness & Presence" is another way to define differentiating businesses, those capable of sustainable growth while balancing both social and economic value, and are outstanding when it comes to "Growing," "Winning" and being "Sustainable"

Uniqueness & Presence (sustainable growth balancing social and economic value) = Differentiating businesses

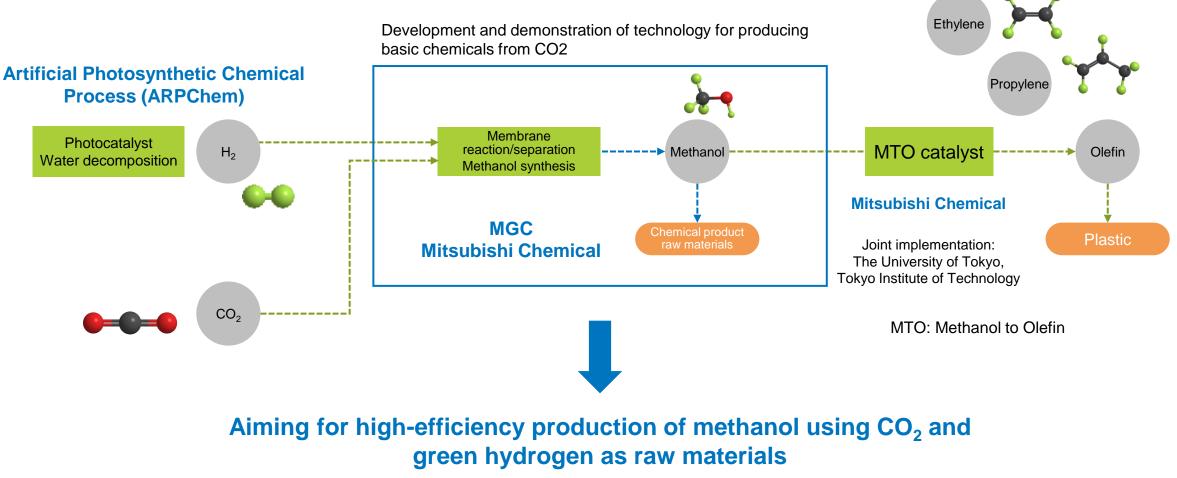
Growing		Winning	Sustainable			
 Future potential in involved markets, with great prospects for growth going forward Expectation of new market development via creation of new applications, products and through M&A activity 		 Businesses possessing competitive advantages in areas such as quality, function, supply chain, technology and cost that are difficult for others to copy → As a result, they 1. Have presence backed by high market share 2. Have market-recognized value, and are capable of gaining high profitability 	Socially recognized value in terms of "Low GHG emissions" and "Contribution to measures to counter climate change and reduce environmental impact"			
Differentiating businesses	Electronic materials, electronic optical materials, methanol, energy resources an POM, MXDA/aromatic aldehyd					



2. Promotion of Circular Carbon Methanol Concept

Overview of Circular Carbon Methanol Concept "Carbopath™"

- MGC
- We are promoting Circular Carbon Methanol concept, an initiative to convert CO₂ emitted into atmosphere, waste plastics, non-fossil biomass, etc., into methanol and recycle it for use as chemicals, fuel, and power generation.



We have named Circular Carbon Methanol concept "CarbopathTM"

The name is derived from "carbon" and "path-finder," and is intended to be a pioneer who actively promotes this concept, as well as to realize carbon neutrality and a circular carbon society. We will guarantee the source and quality of Circular Carbon Methanol and develop the term to indicate the product name, related services, and the concept itself.

Selection as a NEDO GI Fund Project

 MGC and Mitsubishi Chemical selected for Green Innovation Fund / Development of Technology for Producing Raw Materials for Plastics Using CO2 and Other Sources / [Research and Development 4] "Development of technology for producing chemicals from alcohols" (period of FY2021 to FY2028)

Status of Proof of Concept Testing at Niigata Plant

- We have completed proof of concept testing for manufacturing of methanol using CO₂ and hydrogen as raw materials as planned in June 2022.
- Demonstration trials for methanol production using gas from the gasification of biomass and waste plastics were completed as scheduled in June 2023.
- Demonstration trials also are progressing for Circular Carbon Methanol from biogas.
- We continue to develop manufacturing technologies for Circular Carbon Methanol (Carbopath[™]) from various raw materials, and to promote proof of concept testing.

Proof of concept test items	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Manufacturing Technology for Circular Carbon Methanol using CO ₂ and hydrogen as raw material	Technology verification Proof of concept testing	establis	npletion of technology hment and concept des etion of pre-basic desig			Commercializa	tion			
Manufacturing Technology for Circular Carbon Methanol from biomass and waste plastics		Technolog verificatio Proof of con testing	on cent	ss (up to June 2	2023)		Commercializa	tion		
Manufacturing Technology for Circular Carbon Methanol from				Technolo verificati Proof of co testing	on ncept					
biogas (fermented/anaerobic digestive gas)		pletion of ormulation	Equipment modification		peration 24 onward)					
					Promotion/mark	eting	Commercializa	ition		
Development of methanol synthesis reactor for membrane reaction separation process (GI Fund)			cale evaluation ess simulation		Be	nch scale evaluati	ion Proc cond test	cept		

Image for Commercialization and Increasing Scale

 We will aim for the commercialization of Circular Carbon Methanol in the amounts of 100,000 tons by FY2030, and a maximum of 1,000,000 tons from FY2030 onward.

Phase 1

By-product hydrogen, etc. + Utilization of recovered CO₂ Demonstration of Circular Carbon Methanol

- Overseas: Dawn of market for materials and fuels
- Japan: Encourage adoption among sources of demand
- New project creation*

*Waste plastic-based projects also considered in parallel

Up to Tens of thousands of tons

FY2021 onward

Phase 2

Commercialization of Circular Carbon Methanol, using renewable hydrogen

- Overseas: Expansion of market for materials and fuels
- Japan: Start valuation of CO₂ methanol
- → Establishment as a manufacturing and sales business
- Utilization of international projects, domestic renewable energy-based projects, and existing business

Up to 100,000 tons

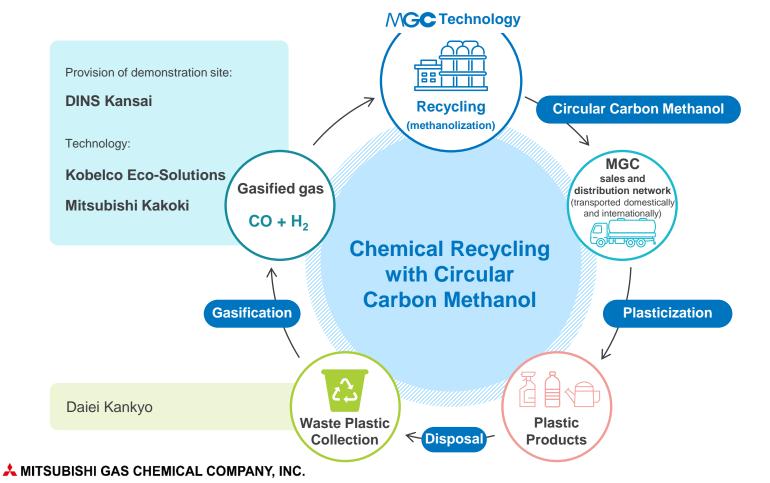
FY2025 onward

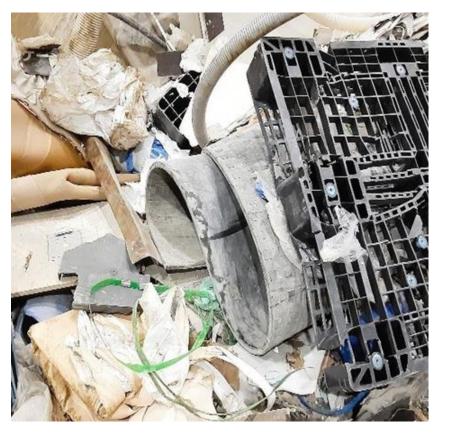
Phase 3

Larger scales for Circular Carbon Methanol Full introduction to primary materials industry

- Expanding value of Circular Carbon Methanol
- Decarbonization in domestic petrochemical industrial complexes
- \rightarrow Improvement and extension of business
- Development of large-scale renewable energy overseas
- Advance of conversion to materials by MTO

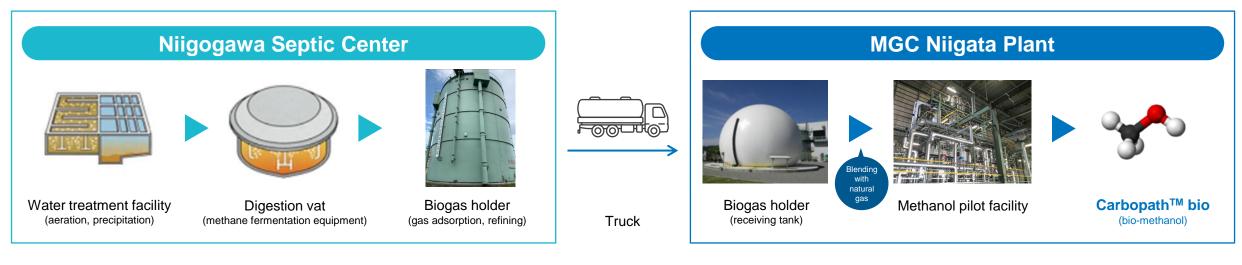
Up to 1,000,000 tons


FY2030 onward


Promotion of Circular Carbon Methanol Concept - Example 1-

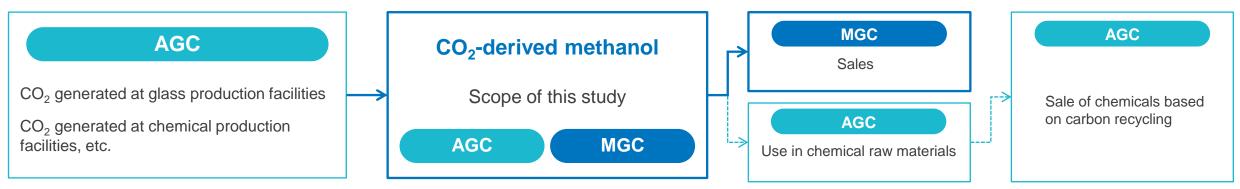
Launch of Japan's first pilot project for waste plastic gasification and methanol conversion

- Launch of pilot technology for production of methanol from hard-to-recycle plastics with low purity/cleanliness
- Selected for Demonstration Project for a Plastic Resource Circulation System toward a Decarbonized Society supported by a grant covering business expenses for countermeasures to reduce CO₂ sponsored by Japan's Ministry of the Environment
- Construction and operational start by Kobelco Eco-Solutions of pilot system in Osaka Eco Town

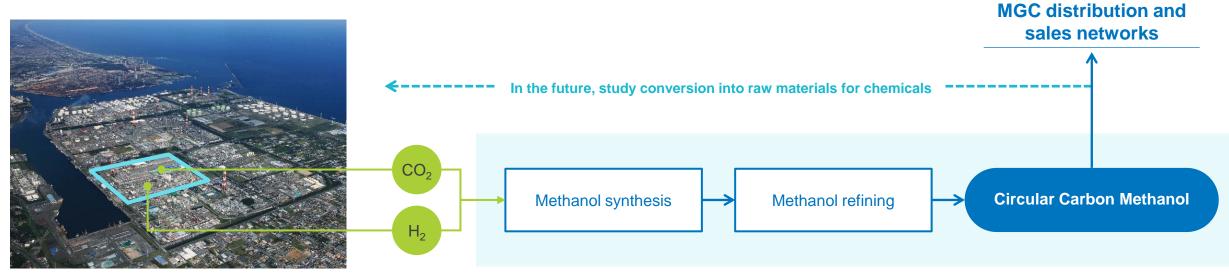


Promotion of Circular Carbon Methanol Concept - Example 2-

Study of bio-methanol production using biogas from a sewage septic center as raw material


Transport: ISO container

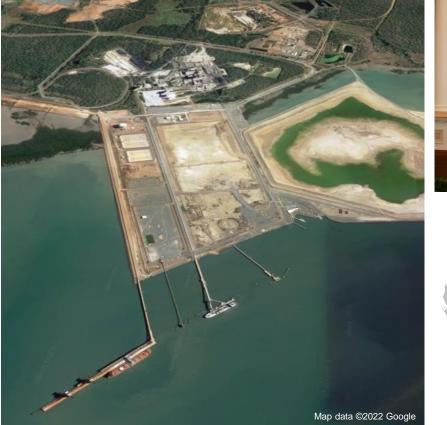
Promotion of Circular Carbon Methanol Concept - Example 3-



Start of study on production and sales of the world's first Circular Carbon Methanol made from CO₂ generated from glass production

This study (production and sale of CO₂-derived methanol)

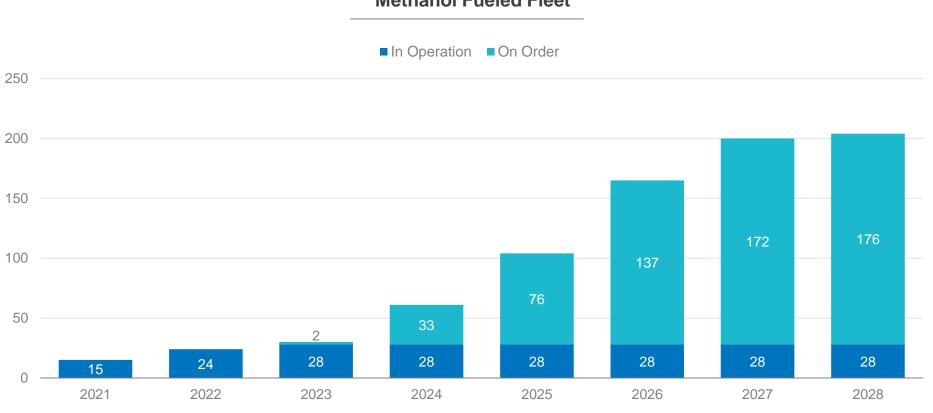
-----> Future studies (use of CO₂-derived methanol as AGC's chemical raw materials, and sale of chemicals based on carbon recycling)



Promotion of Circular Carbon Methanol Concept - Example 4-

Studying commercialization in Gladstone (Queensland, Australia)

- MGC signed a memorandum to study commercialization of the production and sale of methanol derived from green hydrogen and CO₂ collected from the Gladstone Plant of Cement Australia Pty Ltd. (Head Office: Queensland, Australia), from application of MGC's own Circular Carbon Methanol production technology.
- Simple feasibility study is currently in progress. (<u>https://www.mgc.co.jp/eng/corporate/news/2022/221028e.html</u>)


The Gladstone area has a wealth of renewable energy sources, with a host of green hydrogen projects being considered. In addition, thanks to port facilities, highly skilled human resources and other infrastructure in place, the location is considered ideal for a Circular Carbon Methanol business.

The green hydrogen economy is given top priority in the Queensland government's hydrogen industry strategy; the MGC plan is occurring in step with the government's strategy.

Promotion of Circular Carbon Methanol Concept - Example 5-

Dual-fuel methanol carrier

- Compared to burning conventional bunker fuel, methanol fuel significantly cuts SOx, NOx and PM emissions, enabling an up to 15% _ reduction in CO_2 emissions.
- Orders for methanol-fuel carriers are set to rise, with methanol for use in fuels also expected to grow. —

Methanol Fueled Fleet

Source: DNV

Promotion of Circular Carbon Methanol Concept - Example 6-

MGC reaches basic agreement with Mitsui O.S.K. Lines (MOL) on long-term time charter contract for dual-fuel methanol carrier

- MGC itself has reached a basic agreement for the long-term charter of a methanol carrier, which can run on either methanol or conventional heavy fuel oil.
- The vessel will be slated for delivery in 2025. It will be the first methanol dual-fuel carrier vessel chartered by a Japanese company under a long-term charter. MGC and MOL aim to further develop the marine transportation of methanol through this agreement.

Creating value to share with society

May 19, 2023 MITSUBISHI GAS CHEMICAL COMPANY, INC.

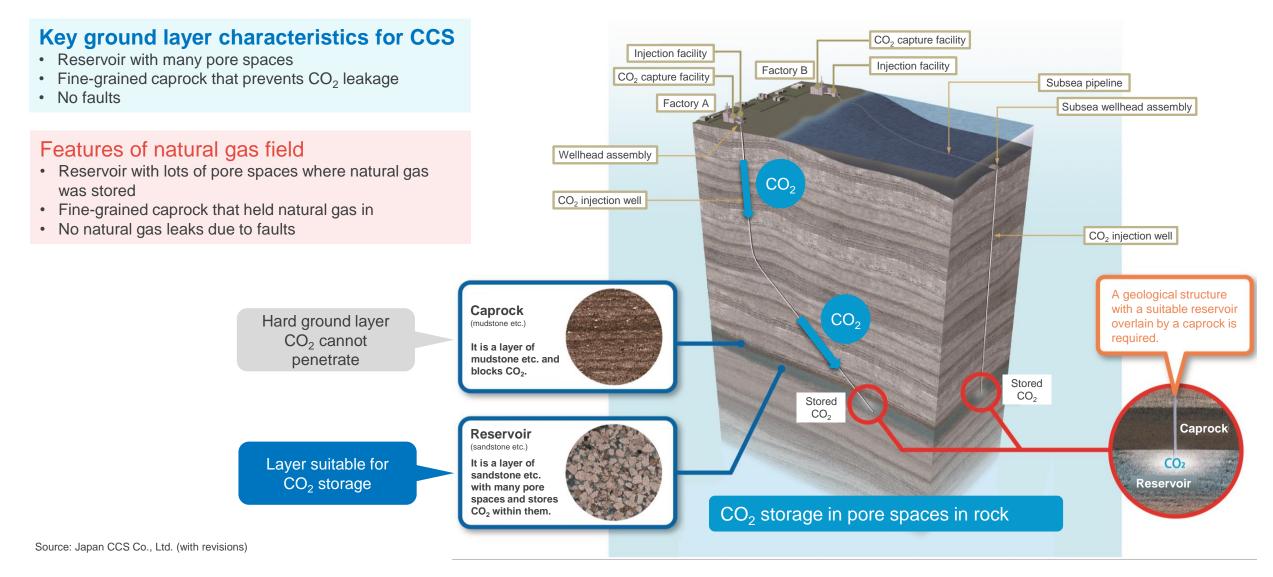
Mitsubishi Gas Chemical Reaches Basic Agreement with Mitsui O.S.K. Lines on Long-term Time Charter Contract for Dual-fuel Methanol Carrier

Mitsubishi Gas Chemical Company, Inc. (MGC; Head Office: Chiyoda-ku, Tokyo; President: Masashi Fujii) today announced the signing of basic agreement with Mitsui O.S.K. Lines, Ltd. (MOL; Head Office: Minato-ku, Tokyo; President & CEO: Takeshi Hashimoto) on 28 April, 2023 for the long-term charter of a methanol carrier, which can run on either methanol or conventional heavy fuel oil. The vessel, slated for delivery in 2025, will be built at Hyundai Mipo Dockyard.

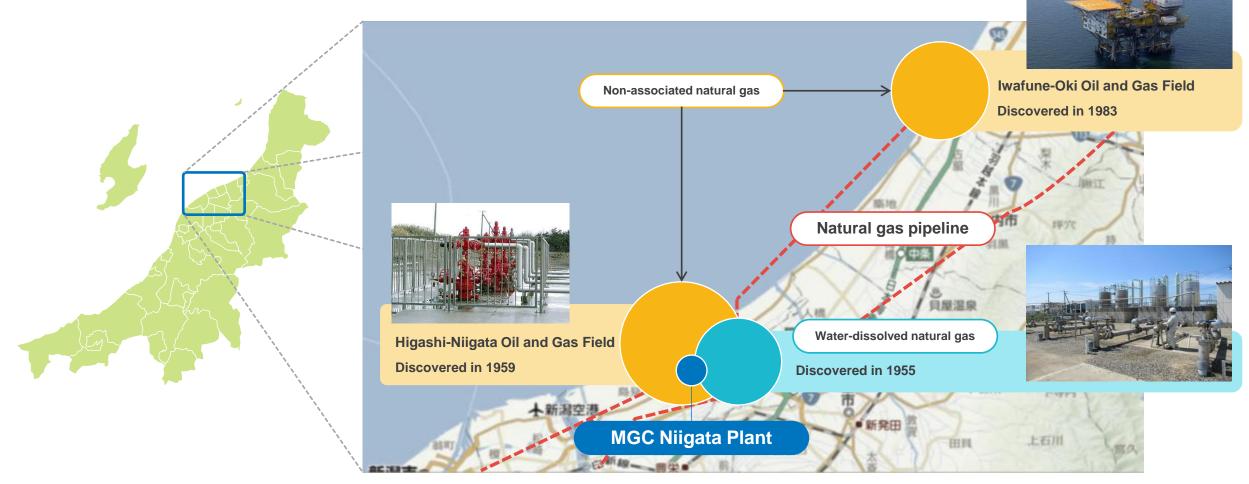
Since MGC chartered Japan's first methanol carrier, the KOHZAN MARU (first generation), from MOL in 1983, the two companies have built a partnership centered on the marine transportation of methanol. This vessel will be the first methanol dual-fuel carrier vessel chartered by a Japanese company under a long-term charter, and the two companies aim to further develop the marine transportation of methanol through this agreement

ISCC PLUS Certification Status

Product	Site	Status	
Methanol	Japan (MTI, Methanol Division) Singapore (MGC-S)	"Trader with Storage" certification received	
	Japan (NF)	Manufacturing certification planned	
Polyacetal	Thailand (TPAC), Korea (KEP)	Manufacturing certification received	
	United States (GPAC-USA, MEP-A)	"Trader with Storage" certification received	
	Korea (KPAC)	"Trader" certification received	
Polycarbonate	Thailand (TPCC)	Manufacturing certification received	
	Japan (KF, KPC, MFS)	Manufacturing certification planned	
	Japan (MEP, MTI, Engineering Plastics Division)	"Trader with Storage" certification planned	

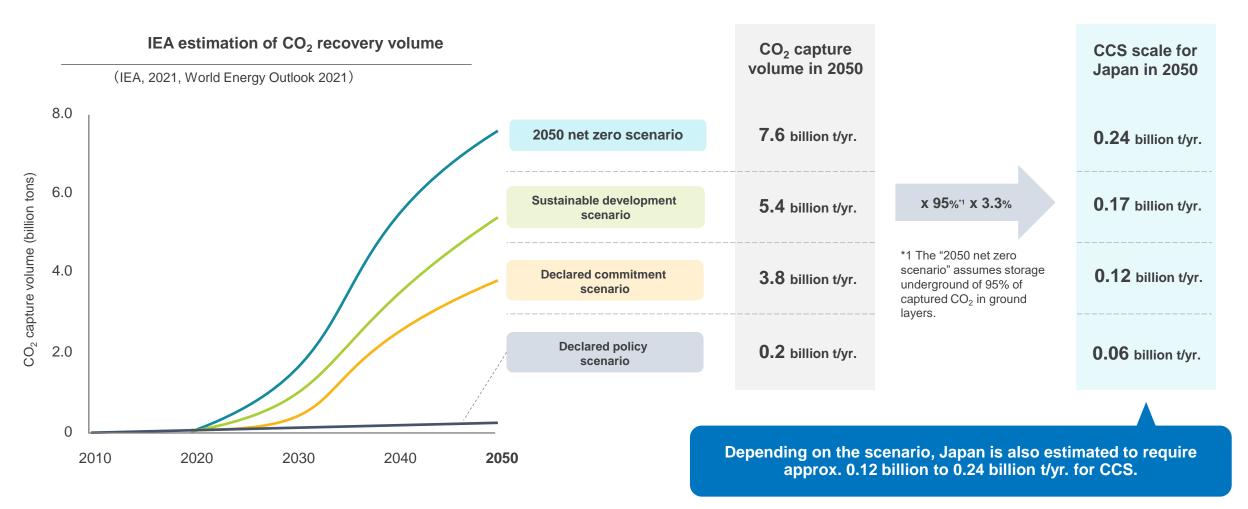


3. Promotion of CCS Utilization


CCS (Carbon Dioxide Capture & Storage)

MGC Strengths

- Ownership of natural gas and water-dissolved natural gas fields (Higashi-Niigata Oil and Gas Field and _ Iwafune-Oki Oil and Gas Field)
- Existing natural gas fields as carbon neutral infrastructure enabling development for CO₂ storage and usage —



Promotion of CCS Utilization: METI Long-term CCS Roadmap

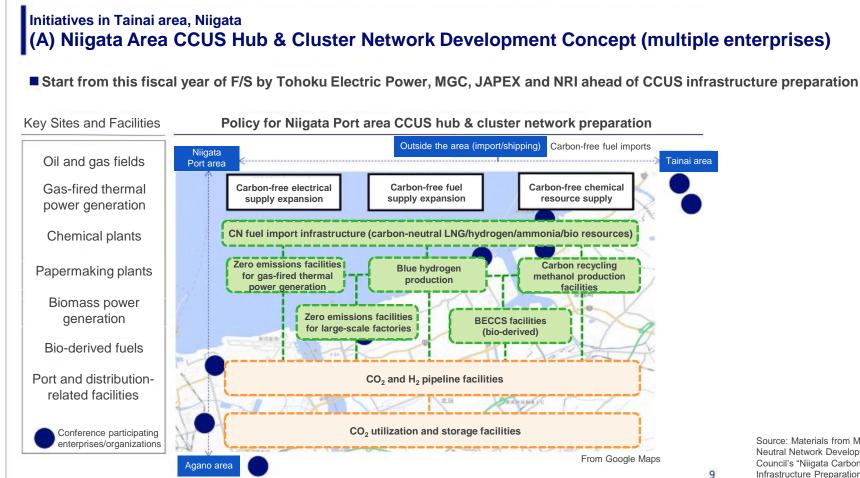
 In Japan, the Ministry of Economy, Trade and Industry (METI)'s Long-term CCS Roadmap Study Committee announced the final wrap-up in March 2023

Source: Developed based on materials from May 2023 final wrap-up of METI Long-term CCS Roadmap Study Committee

Promotion of CCS Utilization: METI Long-term CCS Roadmap

 Beyond commitment to preparing the business environment for enterprises to launch CCS businesses by 2030, also offered explicit actions for preparing legal grounds

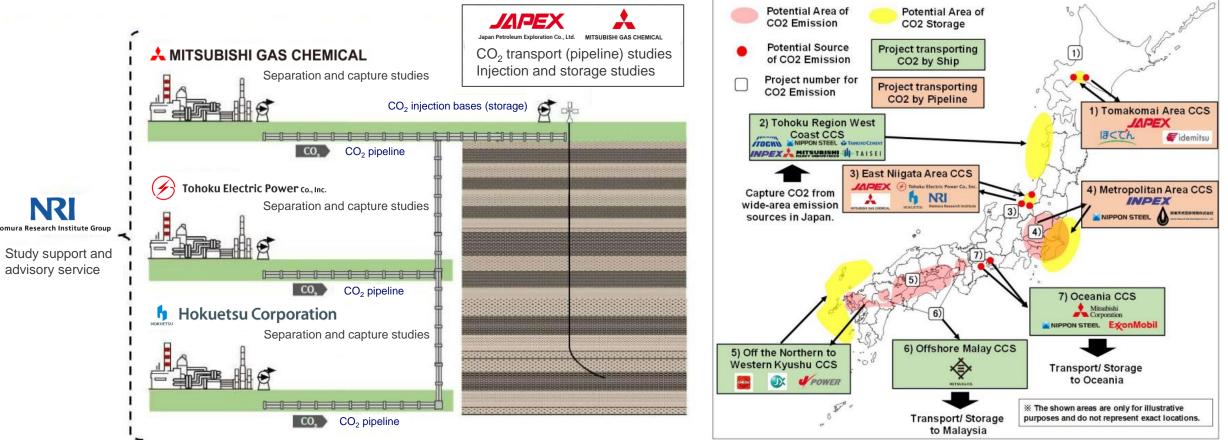
Long-term CCS Roadmap (Cont'd)


	Business model construction			Full-scale deployment	
	Up to 2023	Up to 2026	Up to 2030	Up to 2050	
(1) Government support	2030 [Target of Support] Operators of businesse - Promotion of larger-so - Overwhelming cost re - Moving to gain public [Anticipated Business S Study of suitable CCS location feasibility surveys, etc.	understanding in CO ₂ storage regions, etc. Schedule] s, Test trilling, storage capacity Final investment decisions Drilling, capital inv decisions CO ₂ capture sources, t and loan of survey data	by 2030 and the conversion of CO_2 sto	orage regions into hubs	
(2) CCS cost reductions		eparation and capture cost under 25%, transportation cost under 70)%, and storage cost under 80% of	comparable 2023 figures	
(3) Promote increased public understanding	To gain the understanding of relevant loc clear explanations, study mechanisms for	riefing sessions in each region on this topic al stakeholders residing near CO_2 storage sites, along with r supporting activities for creation of hubs & clusters and red on CCS conducted by regional public and private groups	Enact initiatives based on stud	dy results	
(4) Overseas CCS promotion	In addition to supporting interest acquisition by Japanese firms, embark on international negotiations for possible CO ₂ exports through "Asia CCUS Network" advanced by Japan and Asian countries, coupled with support for projects with risk money supplied by JOGMEC				
(5) Preparation of legislation	Quickly prepare grounds for legal systemization	Establishment of test drilling rights Establishment of storage bus	siness rights		
(6) Drafting and review of CCS Action Plan	Drafting of CCS Action Plan - Refinement of annual storage capacity targets - Review of cost targets - Write-up of technology development guidance - Write-up of location survey plan	Implement revisions as needed in light of progress on decarbonic energy conservation, electrification, and hydrogenation, and prog			

Source: Materials from March 2023 final wrap-up of METI Long-term CCS Roadmap Study Committee

CCS Utilization Promotion: CCUS Hub & Cluster Network Development Concept in Niigata Prefecture

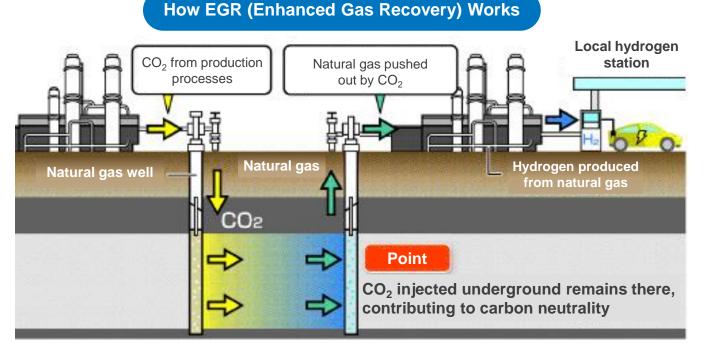
- Niigata Prefecture has a declared aim of effectively zero greenhouse gas emissions by 2050
- The prefecture wrapped up the "Niigata Prefecture Carbon Neutral Industry Vision and Business Model Development Roadmap" in March 2021, and the "Niigata CCUS Hub & Cluster Network Development Concept" in March 2022. The "Carbon Neutral Network Development and Infrastructure Preparation Strategy" was formulated in March 2023.



Source: Materials from March 2023 Niigata Prefecture Carbon Neutral Network Development and Hydrogen Use Promotion Council's "Niigata Carbon Neutral Network Development and Infrastructure Preparation Strategy"

CCS-related Initiatives at MGC (1): Advanced CCS Business

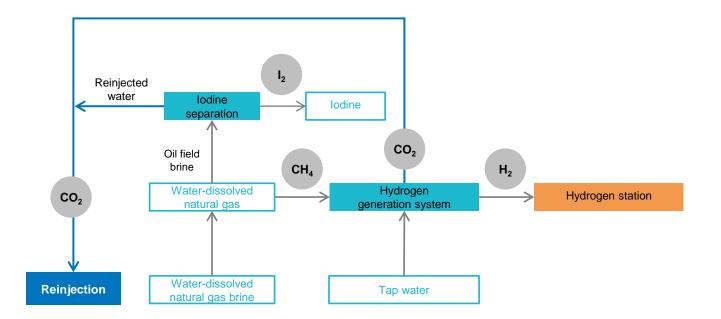
- "Higashi-Niigata Area CCS" selected as one of seven sites nationwide identified through public bidding to assume projects from the "Feasibility Study Concerning Implementation of Advanced CCS Businesses" conducted by Japan Organization for Metals and Energy Security (JOGMEC) in fiscal 2023
- Five-company alliance: MGC, Tohoku Electric Power, Hokuetsu Corporation, Japan Petroleum Exploration (JAPEX), Nomura Research Institute (NRI)
- Aim for business launch by 2030, with target CO_2 storage of 1.5 million t/yr.



Source: JOGMEC website

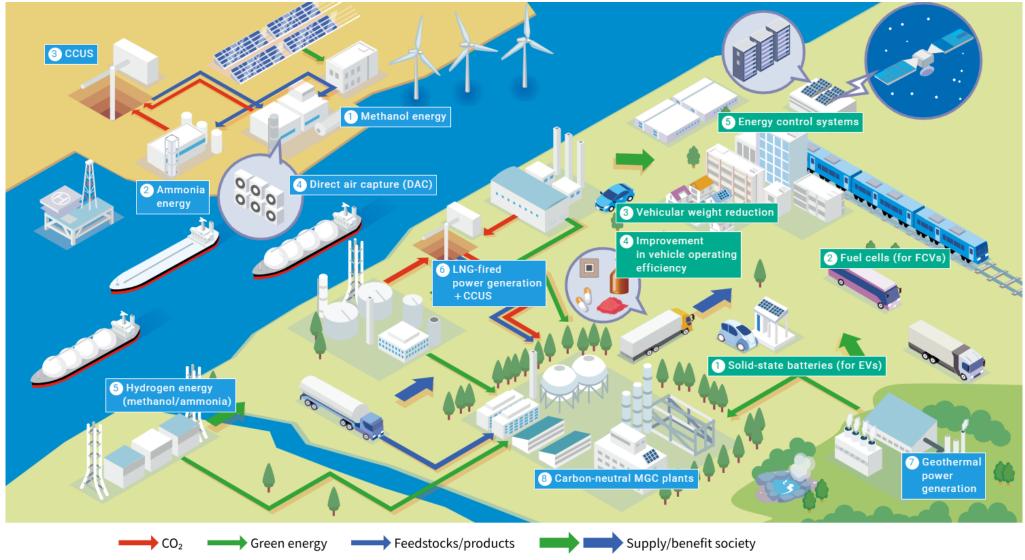
CCS-related Initiatives at MGC (2): Study of CCUS for EGR in Non-Associated Natural Gas Fields

- Investigation of repurposing of existing wells as CO₂ injection wells to increase recovery of natural gas
- MGC has been entrusted to conduct the business project openly recruited by JOGMEC and has launched a study exploring the repurposing of existing non-associated gas wells as CO₂ injection wells for EGR (Enhanced Gas Recovery).
- The push effect from the CO₂ should not only increase natural gas production but is expected to function as a carbon offset by fixing CO₂ underground. As such, this initiative will yield much the same effect as CCS, one measure for greenhouse gas reduction ahead of achieving carbon neutrality by 2050.
- Knowledge gained through this investigation is expected to contribute to promotion of CO₂-EGR/EOR (Enhanced Oil Recovery) in oil and gas fields in Japan.


Source: Niigata Nippo (Niigata Daily News), January 1, 2022

CCS-related Initiatives at MGC (3): Study of CCS in Water-Dissolved Natural Gas Fields MGC

- Promoting initiatives for bringing CCS to water-dissolved gas fields, and for "blue hydrogen" production
- Business feasibility study will be conducted until FY2023; decision to achieve proof-of-concept by 2030


After extracting natural gas and iodine from water-dissolved natural gas brine, once hydrogen is separated from the natural gas, the resulting CO_2 will be injected underground with the brine, allowing blue hydrogen production to be attempted.

Carbon Neutral World of 2050 as Imagined by MGC

- As a chemical manufacturer, we are in a perfect position to positively impact the earth's environment.

Disclaimer

This document has been translated from the Japanese original for reference purpose only. In the event of any discrepancy between this translated document and the Japanese original, the original shall prevail.

This document contains performance forecasts and other statements concerning the future. These forward-looking statements are based on information available at the time. These materials were prepared and on certain premises judged to be reasonable. None of these forwardlooking statements are intended to be guarantees of future performance. Various factors may cause actual performance to differ significantly from forecasts.

